Impact of phonon-assisted tunneling on electronic conductivity in graphene nanoribbons and oxides ones

نویسندگان

  • Povilas Pipinys
  • Antanas Kiveris
چکیده

Phonon-assisted tunneling (PhAT) model is applied for explication of temperature-dependent conductivity and I-V characteristics measured by various investigators for graphene nanoribbons and oxides ones. Proposed model describes well not only current dependence on temperature but also the temperature-dependent I-V data using the same set of parameters characterizing material under investigation. The values of active phonons energy and field strength for tunneling are estimated from the fit of current dependence on temperature and I-V/T data with the phonon-assisted tunneling theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational study of the thermal conductivity in defective carbon nanostructures

We use nonequilibrium molecular dynamics simulations to study the adverse role of defects including isotopic impurities on the thermal conductivity of carbon nanotubes, graphene, and graphene nanoribbons. We find that even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to one half by decreasing the phonon mean-free path. An even larger ther...

متن کامل

Ultra-low thermal conductivity in graphene nanomesh

Graphene nanomesh (GNM), a new nanostructure of graphene, has attracted extensive interest recently due to the promising chemical, electronic and photonic applications. In this paper, another important property e thermal conductivity is systematically investigated by using molecular dynamics simulations. The thermal conductivity (k) is found to be extremely low, up to more than 3 orders lower t...

متن کامل

Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study

The thermal conductivity of monolayer graphene nanoribbons (GNRs) with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%~30% thermal conductivity decay is found in 9%~15...

متن کامل

Stacking dependent electronic structure and transport in bilayer graphene nanoribbons

The stacking-dependent electronic structure and transport properties of bilayer graphene nanoribbons suspended between gold electrodes are investigated using density functional theory coupled with non-equilibrium Green’s functional method. We find substantially enhanced electron transmission as well as tunneling currents in the AA stacking of bilayer nanoribbons compared to either single-layer ...

متن کامل

Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering

Equilibrium molecular dynamics simulations show that graphene nanoribbons (GNRs) with zigzag edges have higher thermal conductivity (j) than armchair-edged ones, and the difference diminishes with increasing temperature or ribbon width. The dominant phonon wavelength for thermal transport can be much longer (by orders of magnitude) than the difference between the “roughness” of smooth zigzag an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014